ROBOTIC & VISION

 
Robotic
 

Robotics is an interdisciplinary field that integrates computer science and engineering. Robotics involves design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrates fields of mechanical engineering, electrical engineering, information engineering, mechatronics, electronics, bioengineering, computer engineering, control engineering, software engineering, mathematics, among others.

Robotics develops machines that can substitute for humans and replicate human actions. Robots can be used in many situations and for many purposes, but today many are used in dangerous environments (including inspection of radioactive materials, bomb detection and deactivation), manufacturing processes, or where humans cannot survive (e.g. in space, underwater, in high heat, and clean up and containment of hazardous materials and radiation). Robots can take on any form but some are made to resemble humans in appearance. This is said to help in the acceptance of a robot in certain replicative behaviors usually performed by people. Such robots attempt to replicate walking, lifting, speech, cognition, or any other human activity. Many of today's robots are inspired by nature, contributing to the field of bio-inspired robotics.

Reference : Robotics - Wikipedia


วิทยาการหุ่นยนต์ เป็นศาสตร์ทางวิทยาศาสตร์และเทคโนโลยีที่เป็นการบูรณาการกันระหว่างศาสตร์วิทยาการคอมพิวเตอร์ และวิศวกรรมศาสตร์ ศึกษาเกี่ยวกับการออกแบบ การผลิต การควบคุม และการประยุกต์ใช้งานหุ่นยนต์ จุดประสงค์หลักของวิทยาการหุ่นยนต์คือการออกแบบเครื่องจักรอัจฉริยะที่สามารถช่วยเหลือมนุษย์ในการทำงานในชีวิตประจำวัน สร้างความปลอดภัยในการทำงานของมนุษย์ วิทยาการหุ่นยนต์ประยุกต์ใช้ความรู้ที่เกี่ยวข้องกับ วิศวกรรมข้อมูล, วิศวกรรมคอมพิวเตอร์, วิศวกรรมเครื่องกล, วิศวกรรมไฟฟ้า, วิศวกรรมซอฟต์แวร์, และอื่น ๆ

วิทยาการหุ่นยนต์เป็นการพัฒนาเครื่องจักรที่สามารถทดแทนแรงงานมนุษย์และลอกเลียนแบบกิจกรรมที่มนุษย์ทำ หุ่นยนต์สามารถประยุกต์ใช้ได้ในหลากหลายสถานการณ์ และในการใช้งานหลากวัตถุประสงค์ ในทุกวันนี้หุ่นยนต์จำนวนมากทำงานที่เป็นอันตราย (อาทิเช่น การตรวจสอบวัตถุที่ปนเปื้อนกัมมันตรังสี, การตรวจสอบวัตถุระเบิด และการปลดชนวนวัตถุระเบิด) แปรรูปผลิตภัณฑ์ในโรงงาน รวมไถึงทำงานในสภาวะแวดล้อมที่มนุษย์ไม่สามารถมีชีวิตอยู่ได้เพื่อการวิจัยทางวิทยาศาสตร์ (อาทิเช่น อวกาศห้วงลึก, ใต้มหาสมุทร, ในอุณหภูมิสุดขั้ว หรือทำความสะอาดวัตถุปนเปื้อนสารพิษ) หุ่นยนต์มีรูปร่างที่หลากหลาย หุ่นยนต์บางชนิดออกแบบมาเพื่อจำลองหน้าตาและการเคลื่อนไหวของมนุษย์ ยกตัวอย่างเช่น การเดิน, การวิ่ง, การยกน้ำหนัก, การเรียนรู้การพูด, การจดจำใบหน้า หรือพฤติกรรมอื่น ๆ ที่มนุษย์ทำ หุ่นยนต์จำนวนหนึ่งในปัจจุบันได้รับการออกแบบ โดยได้รับแรงบันดาลใจจากธรรมชาติ เรียกว่า “วิทยาการหุ่นยนต์ชีวภาพ (Bio-inspired Robotics)”
 

Robotics2


การจัดประเภทของหุ่นยนต์ 
แบ่งตามเวลาที่คิดค้น
  • รุ่นที่ 1 หุ่นยนต์แขนกล มีระบบควบคุม (control system) ที่ไม่ซับซ้อน คำตามคำสั่งที่โปรแกรมไว้
  • รุ่นที่ 2 หุ่นยนต์ที่เรียนรู้ได้ สามารถเคลื่อนไหวในรูปแบบก่อนหน้า ที่เคยทำโดยผู้ปฏิบัติงานมนุษย์ วิธีการนี้ทำได้ด้วยอุปกรณ์เชิงกล ผู้ควบคุมหุ่นยนต์ทำการเคลื่อนไหวที่ต้องการโดยหุ่นยนต์จะจดจำการเคลื่อนไหวนั้น
  • รุ่นที่ 3 หุ่นยนต์ที่มีการควบคุมเซ็นเซอร์ (senserized control) คอมพิวเตอร์ที่ควบคุมการทำงานจะประมวลผลคำสั่งของโปรแกรม และส่งไปยังหุ่นยนต์เพื่อทำการเคลื่อนไหวที่จำเป็น
ตามโครงสร้าง
  1. หุ่นยนต์ข้อปล้อง (polyarticulated robot) หุ่นยนต์กลุ่มนี้มีรูปร่างและการกำหนดค่าที่แตกต่างกัน คุณสมบัติทั่วไปคือการอยู่นิ่ง (แม้ว่าจะโปรแกรมการเคลื่อนไหวได้อย่างไม่จำกัด) และมีโครงสร้างเพื่อย้ายองค์ประกอบเทอร์มินัลในพื้นที่ตามพิกัดที่กำหนด โดยมีการทำงานอิสระที่จำกัด หุ่นที่อยู่ในกลุ่มนี้ ประกอบด้วย หุ่นยนต์แขนกล (manipulative robot), หุ่นยนต์อุตสาหกรรม (industria robot) และ หุ่นยนต์ชนิดคาร์ทีเซียน (Cartesian robot) ใช้ในพื้นที่ทำงานที่ค่อนข้างยาว หรือ ดำเนินการกับวัตถุที่มีระนาบสมมาตรแนวตั้ง[7]
  2. หุ่นยนต์เคลื่อนที่ (mobile robot) เป็นหุ่นยนต์ที่มีความสามารถในการเคลื่อนที่ที่ดี โดยเคลื่อนที่ด้วยรถยนต์ หรือ แพลตฟอร์ม และติดตั้งระบบหัวรถจักรกลิ้ง (rolling locomotive system) หุ่นยนต์จำพวกนี้เคลื่อนที่ได้โดยการควบคุมระยะไกล หรือ จากข้อมูลเซนเซอร์ที่ตรวจจับจากสภาพแวดล้อม หุ่นยนต์เหล่านี้สร้างประสิทธิภาพในการขนส่งชิ้นส่วนจากจุดหนึ่งไปอีกจุดหนึ่งในห่วงโซ่การผลิต นำโดยแทร็ก materialized ผ่านการแผ่รังสีแม่เหล็กไฟฟ้าจากระบบวงจรฝังตัวในพื้นดินหรือผ่านแบนด์ที่ตรวจจับข้อมูลด้วยโฟโตอิเล็กทริก หุ่นยนต์จำพวกนี้สามารถหลบสิ่งกีดขวางและมีความฉลาดสูง
  3. หุ่นยนต์แอนดรอยด์ (android) เป็นประเภทของหุ่นยนต์ที่มีการออกแบบจากรูปร่าง การเคลื่อนไหว และ พฤติกรรมของมนุษย์ ปัจจุบันหุ่นยนต์แอนดรอยด์ยังมีการพัฒนาน้อยมาก โดยไม่มีประโยชน์ใช้สอยเชิงพาณิชย์ ส่วนใหญ่จะใช้สำหรับการวิจัยและทดลอง หนึ่งในแง่มุมที่ซับซ้อนที่สุดของหุ่นยนต์เหล่านี้ ก็คือการเคลื่อนที่แบบสองเท้า ในกรณีนี้ปัญหาหลักคือการควบคุมกระบวนการแบบไดนามิกและประสานงานในเวลาจริง พร้อมกับการรักษาสมดุลของหุ่นยนต์ในเวลาเดียวกัน[8]
  4. หุ่นยนต์เลียนแบบสัตว์ หรือ หุ่นยนต์ซูมอร์ฟิก (zoomorphic robot) มีระบบการเคลื่อนที่และการออกแบบที่เลียนแบบการเคลื่อนไหวของสัตว์[9] (นักวิทยาการหุ่นยนต์บางคนจัดให้แอนดรอยด์ เป็นหุ่นยนต์ซูมอร์ฟิก) หุ่นยนต์ซูมอร์ฟิก แบ่งเป็นสองประเภทหลักคือ เดิน และ ไม่เดิน กลุ่มของหุ่นยนต์ซูมอิกแบบไม่เดินนั้นมีวิวัฒนาการน้อยมาก การทดลองที่เกิดขึ้นในประเทศญี่ปุ่นโดยอาศัยส่วนของทรงกระบอกขอบเอียงตามแกน ควบคู่กับเคลื่อนไหวที่สัมพันธ์กันของการหมุน ในส่วนของหุ่นยนต์ซูมอร์ฟิกที่ใช้การเดินเพื่อการเคลื่อนที่จะมีรูปแบบที่หลากหลายและมีการพัฒนาทดลองกันในวงกว้าง มีจุดประสงค์เพื่อพัฒนาหุ่นยนต์ที่ขับเคลื่อนในภูมิประเทศที่หลากหลาย อาทิ พื้นผิวขรุขระ พื้นผิวที่เป็นแอ่งโคลน หุ่นยนต์เหล่านี้มีศักยภาพด้านการสำรวจอวกาศและในการศึกษาภูเขาไฟ
  5. หุ่นยนต์ไฮบริด (hybrid robot) หุ่นยนต์เหล่านี้จำแนกประเภทได้อย่างยากลำบาก มีการวางโครงสร้างที่เป็นการรวมกันของหุ่นยนต์หลายประเภท ตัวอย่างเช่น อุปกรณ์ที่มีการเคลื่อนไหวคล้ายสัตว์และมีล้อเคลื่อนที่ เป็นหนึ่งในคุณลักษณะของหุ่นยนต์เคลื่อนที่และหุ่นยนต์ซูมอร์ฟิก เป็นต้น
เว็บไซต์อ้างอิง : วิทยาการหุ่นยนต์ - วิกิพีเดีย (wikipedia.org)

 
3D-Vision


Vision systems for robot guidance
A vision system comprises a camera and microprocessor or computer, with associated software. This is a very wide definition that can be used to cover many different types of systems which aim to solve a large variety of different tasks. Vision systems can be implemented in virtually any industry for any purpose. It can be used for quality control to check dimensions, angles, colour or surface structure-or for the recognition of an object as used in VGR systems.

A camera can be anything from a standard compact camera system with integrated vision processor to more complex laser sensors and high resolution high speed cameras. Combinations of several cameras to build up 3D images of an object are also available.

Reference : Vision Guided Robotic Systems - Wikipedia